基于水平集方法的Chan-Vese模型是一种典型的几何活动轮廓模型,已成功应用于众多领域中的图像分割问题。为了提高该模型的演化速度和分割效果,提出了一种基于径向基点插值求解Chan-Vese模型的高效数值算法。通过用径向基点插值法逼近水平集函数,Chan-Vese模型被离散为常微分方程组初值问题并可用向前Euler法求解。该算法不需要网格单元,对水平集初始轮廓不敏感,不涉及复杂费时的重新初始化过程,并且有明确的演化终止条件,无需事先设置演化次数。实验表明该算法在没有初始轮廓时也能正确分割图像,具有很快的演化速度。