在三维物体识别系统中,提出将三维物体的Hu不变矩和仿射不变矩两者的低阶矩组合作为三维物体的特征,结合改进的BP神经网络应用于三维物体的分类识别。理论分析和仿真实验表明组合这两种矩特征进行物体识别,性能优于单独使用Hu不变矩,如果进一步对这两种组合的矩特征进行主成分分析处理,可显著提高系统识别性能,并减少网络的训练时间。