暂无评论
提出了一种小波包分析与最小二乘支持向量机相结合的机械设备故障诊断模型。首先对故障信号功率谱进行小波分解,简化了故障特征向量的提取,然后采用最小二乘支持向量机进行故障诊断。在该模型中,用二次损失函数取代
随着大量基因表达数据的涌现,把海量的数据划分成数量相对较少的组,有助于提取对生理学和医药学等有价值的生物信息。基因分类技术能够很好地处理和分析这些基因数据。提出了一种应用于基因分类的模糊最小二乘支持向
为从电动机频谱识别出故障电动机,先用CZT变换(线性调频Z变换)分析采集到的电动机数据进行分类,然后训练最小二乘向量机,再把相同维数的数据送入训练好的最小二乘向量机进行判断,最终得出用最小二乘向量机进
油中溶解气体分析是变压器绝缘故障诊断的重要方法。为了提高分类的准确度和可靠性,应用最小二乘支持向量机理论建立了变压器的分类模型。该模型以变压器油中5种主要特征气体作为输入量,以7种变压器状态作为输出量
最小二乘向量机的工具箱matlab代码,实测有效。只需在安装了SVM工具箱后将该工具箱放入matlab工具箱文件,并添加路径即可
Self-calling support vector regression and partial least squares optimization support vector machine
粒子群算法优化支持向量机(PSO-SVM)应用于分类问题时,相比单一支持向量机(SVM),展现出更优越的性能。
通过粒子群算法优化支持向量机,可实现故障特征向量的分类
通过将粒子群算法也支持向量机结合,使用支持粒子群算法优化支持向量机参数,并训练支持向量机
在DNA计算中,为了确保计算结果的精度和可靠性,要求每个进行编码的DNA分子具有相同或者近似的热力学性质,解链温度Tm是评价DNA分子的热力学稳定性的一个重要的参数。以DNA序列的邻近法参数为基础,应
暂无评论