油中溶解气体分析是变压器绝缘故障诊断的重要方法。为了提高分类的准确度和可靠性,应用最小二乘支持向量机理论建立了变压器的分类模型。该模型以变压器油中5种主要特征气体作为输入量,以7种变压器状态作为输出量,选用了径向基核,使用了一对一的多分类算法,充分发挥了支持向量机具有较高泛化能力的优势。通过大量的实例分析,并将诊断结果与IEC三比值法、改良三比值法和BP神经网络的诊断结果相比较,表明基于径向基核的最小二乘支持向量机在变压器故障诊断中具有更高的准确率。