基于深度卷积神经网络与迁移学习的鱼类分类识别.pdf
高效的鱼类分类识别是海洋牧场智能化监测的基础.传统的通过浅层模型,利用目标特征的分类识别方法效率低下,泛化性差,难以实现智能化应用;而重建并训练深度卷积神经网络(DCNN)模型占用巨大的计算机资源.文章提出一种基于DCNN和迁移学习的方法,针对新图像数据集,通过选择训练参数,对预训练模型进行再训练,实现鱼类的分类识别.通过实验证实,这种方法可在占用少量的计算机资源情况下,达到97.14%的验证准确率.使用基于DCNN与参数迁移的学习策略可以得到性能良好的深度神经网络鱼类分类识别模型.
暂无评论