针对最小二乘支持向量机处理大规模数据集耗时长且受内存限制的特点,将局部多模型方法与Map-Reduce编程模式相结合,提出一种并行最小二乘支持向量机回归模型。模型由两组MapReduce过程组成,首先按照输入样本集对样本数据进行聚类操作,再对聚类后得到的子类按输出样本集进行二次聚类操作,分别得到局部模型数目和各局部模型综合加权输出计算结果。实验结果表明,并行最小二乘支持向量机回归模型具有较好的加速比和可扩展性。