暂无评论
论文研究-基于粗糙集的区间型数据离散化算法.pdf, 针对条件属性取值为区间型数据的离散化问题,提出了一种新的基于粗糙集理论的离散化算法.首先将粗糙集理论中上、下近似的概念进行扩展,用以描述区间数对象
入侵检测领域的数据往往具有高维性及非线性特点,且其中含有大量的噪声、冗余及连续型属性,这就使得一般的模式分类方法不能对其进行有效的处理。为了进一步提高入侵检测效果,提出了基于邻域粗糙集的入侵检测集成算
针对基于分辨矩阵约简算法中存在冗余元素,从而导致空间存储代价高的问题,提出一种基于加权浓缩树的属性约简算法。该算法可以进一步剔除冗余元素,压缩存储分辨矩阵中的信息,并且在构建树结构的过程当中考虑了属性
作为Pawlak粗糙集的扩展,邻域粗糙集能有效地处理数值型的数据。但是,因为沿用了Pawlak粗糙集在构造上下近似集时的包含关系,邻域粗糙集对噪声数据的容错性很差。针对这个问题,通过引入贝叶斯最小风险
现有的实体分辨方法在准确性和效率上各有所长,将易分辨和难分辨的记录对分开,为下一步分别应用不同分辨方法提供基础。对待划分的记录对,利用变精度邻域粗糙集分别计算相似记录对和不相似记录对的上下近似集,得到
基于粗糙集的快速车牌字符识别技术,王波,陈迎娜,为了解决传统识别技术在车牌字符识别时效率低的问题,该文提出了一种基于粗糙集高效属性约简算法的快速车牌识别技术,该方法首先
基于粗糙集和属性直方图的医学图像增强,张璐,谢刚,医学图像信息存在着复杂性,在处理中的各个不同层次可能出现不完整性和不确定性。利用粗糙集理论进行图像增强,子图的划分是关键
综合考虑不完备信息系统中信息缺失的不同情况及属性本身的重要性,提出了加权特性关系,给出了基于加权特性关系的扩展粗糙集模型及其近似集的定义和性质,并用实际例子解释了该扩展粗糙集模型的近似集计算方法。
提出了一种基于粗糙集约简的支持向量机图像插值方法,目的在于提高基于学习的插值方法的插值效率,改善放大图像边缘模糊现象。首先在原始图像上利用已知的像素灰度值及邻域内像素间的相关性构造训练样本集;然后利用
通过研究飞机快速存取记录器(Quick Access Recorders,QAR)数据和粗糙集理论的特点,结合信息决策表的相关知识,对QAR数据中的异常数据进行检测挖掘,以辅助飞机故障检测及排除。主要
暂无评论