暂无评论
针对粒子群优化算法稳定性较差和易陷入局部极值的缺点,提出了一种新颖的混沌粒子群优化算法。一方面,在可行域中应用逻辑自映射函数初始化生成均匀分布的粒群,提高了初始解的质量和增加了算法的稳定性;另一方面,
针对目前多峰函数优化问题较难找到全部局部最优解的情况,提出了一种粒子群Memetic算法。算法结合了粒子群优化的全局搜索能力和爬山法的局部搜索能力,增强了算法搜索最优解的能力。实验结果表明,该算法求解
多车场多车型车辆调度问题优化是物流配送中的典型NP难解问题,针对传统的粒子群算法存在收敛速度慢,易早熟收敛等问题,提出了一种改进的粒子群优化算法。该算法对种群中的粒子采用一定的概率进行柯西变异,使算法
基于混沌粒子群算法的模糊C均值算法,崔金平,冀常鹏,模糊C-均值聚类算法存在的两点问题:一是算法的性能依赖于初始聚类中心的选取,同时聚类的效果受初始值的影响较大;二是FCM算法在�
目前智慧煤矿边缘计算中的任务分配大多采用集中式分配算法,划分任务优先级时考虑的因素较单一,且未考虑煤矿网络拓扑的窄长型特征。针对该问题,结合煤矿场景下任务的特点,提出一种基于动态优先级和实时竞价策略的
随机优化的粒子群算法(PSO)在解决待优化问题时,仅利用适应度函数对单个粒子所找到解的优劣进行判断,缺乏对种群总体状态的评估,导致算法经过一定次数的迭代后陷入局部收敛。改进算法BPPSO利用BP神经网
针对标准粒子群算法进行多极点函数优化时易导致早熟收敛及陷入局部最优的问题,把生物学中昆虫生存的趋利避害原则引入到粒子群优化算法中,改变传统粒子群优化算法只存在趋利操作而没有避害操作的单向性,提出了两种
RNA二级结构预测在计算生物学中具有重要意义,针对RNA二级结构预测,提出了一种新的免疫粒子群集成算法,根据个体的浓度和适应值概率,利用免疫机制,在粒子群优化算法中设计了免疫替换算子,有效防止了粒子群
matlab平台下的粒子群和混沌搜索的协同优化算法,程序可以成功运行。
基于粒子群算法的多核系统任务调度
暂无评论