暂无评论
基于粒子群信息传递模式的混合算法,段晓东,王存睿,粒子群优化算法(Particle Swarm Optimization,简称PSO)是一种基于群智能(Swarm Intelligence)的随机优化
针对目前多目标粒子群优化算法的收敛性能和非劣解的多样性不能同时得到满足等缺陷,提出一种基于多策略的多目标粒子群优化算法(Multi-ObjectiveParticleSwarmOptimization
如何选择最优或接近最优的核函数使分类错误率降低,是KPCA应用于特征提取的关键。为了优化核函数,提高特征提取的能力并降低分类错误率,在研究了文化算法(culturalalgorithm,CA)、粒子群
研究粒子群算法在数据库查询优化中的应用问题。为了解决大型数据库信息检索困难、查询效率低的问题,提出了一种基于粒子群算法优化数据库查询技术方案。算法提出了一种数据库查询执行计划代价模型,主要包括了查询多
基于改进的粒子群优化算法求解TSP问题,沐爱勤,张瑞平,粒子群优化算法是一种新型的优化算法,主要应用于连续优化问题,本文通过引入移动算子和移动序的概念,使粒子群优化算法能够处理
针对粒子群算法收敛速度慢和易陷入局部最优的问题,提出了基于惯性权重对数递减的粒子群算法,并引入对数调整因子,对数调整因子的不同取值保证了算法搜索成功率。选取八种典型函数分别进行给定迭代次数和给定精度的
为了实现WSN覆盖范围的最大化,延长网络寿命,在标准粒子群算法的基础上提出了一种无线传感器网络覆盖优化策略。通过粒子分簇并行搜索,采取碰撞理论使陷入局部最优的粒子迅速跳出,有效地避免了标准粒子群算法容
针对量子粒子群优化(QPSO)算法在优化过程中面临早熟问题,提出了在粒子的平均位置或全局最优位置上加入高斯扰动的QPSO算法,可以有效地阻止粒子的停滞,因此较容易地使粒子避免陷入局部最优。为了评估算法
提出了一种基于动态粒子群优化的网格任务调度算法。设计了网格任务调度问题的数学模型,给出了自适应变异的动态粒子群优化算法的框架,引入了自适应学习因子和自适应变异策略,从而使算法具有动态自适应性,能够较容
针对标准粒子群优化算法易出现早熟收敛、搜索速度慢及寻优精度低等缺陷,提出一种基于随机惯性权重的简化粒子群优化算法。算法采用去除速度项的粒子群简化结构,通过随机分布的方式获取惯性权重提高新算法的局部搜索
暂无评论