针对聚类过程中有意义的异常数据难以识别的问题,在改进CMM算法的基础上,提出了一种融合了异常数据识别的层次聚类算法。采用CMM方法提出的原子簇思想,通过重新定义簇中心、噪声判断标准以及改进循环机制等手段提高聚类准确性及算法效率。提出了异常数据的概念和定义,并将其识别算法引入聚类过程过程。基于仿真及实际数据的实验结果证明,该算法能够根据设定参数准确识别异常数据,同时其聚类准确性及性能针对CMM算法也有了相应提高。