为对煤层气井产能的实时动态监测和预测预报,基于时间序列预测思想构建了适合于煤层气井产能预测的BP神经网络模型.以潘庄CM1井为预测实例,分析表明:BP神经网络能够较为准确地预测出煤层气井未来30 d的产能变化,其产气量和产水量预测平均相对误差分别为1.35%和3.88%;与COMET3预测结果相比,BP神经网络短期产能预测精度高,能更好的反映出煤层气井产能变化趋势.