论文研究 基于道路网络的移动对象聚类.pdf
现有的基于道路网络对象聚类算法eb-cls采用网络距离描述移动对象间的相似性,没有充分利用对象的时间和空间属性,造成算法不能体现移动对象动态演化的移动模式,频繁更新聚类结果并且聚类精度不理想,执行效率低等问题。针对这些不足,提出基于道路网络的移动对象聚类算法MOBORN(Moving Objects Based on Road Network),该算法引入时空相似系数,考虑了移动对象速度、方向和位置。当移动对象间的时空相似系数达到给定阈值,将其分到同一聚类,并动态维护聚类结果,减少聚类次数。实验结果证明,与eb-cls算法相比,该算法聚类精度保持在97%以上,运行效率提高了40%。
暂无评论