为了提高分布式传感网络的估计精度,提出了一种新的自适应一致性算法。该算法在每次迭代时只需部分节点工作,即进行目标状态的监测。通过节点之间二进制信息的交换来调整每次迭代时的一致性权值,使得每次迭代时工作节点所占的权值更大,进而将该一致性算法与卡尔曼滤波相结合对目标状态进行估计。对该算法进行数值仿真,并与其他一致性加权算法进行比较,验证了该算法的有效性。