传统的聚类算法不适用于处理海量和高维数据。针对云计算环境下,利用集群系统的并行计算能力,实现海量数据的聚类问题,给出了云计算环境下基于分形维数的聚类融合算法。该算法首先对基于分形维数的聚类算法进行改进,使之更适用于并行计算,其产生聚类作为初始聚类成员;再结合投票算法的融合策略实现融合。最后,对基于分形维数的聚类融合算法在云计算环境下实现并行计算。通过在UCI数据集上的对比实验来验证该算法的有效性。