暂无评论
提出一种基于修改增广Lagrange函数和PSO的混合算法用于求解约束优化问题。将约束优化问题转化为界约束优化问题,混合算法由两层迭代结构组成,在内层迭代中,利用改进PSO算法求解界约束优化问题得到下
针对约束优化问题,提出一种自适应人工蜂群算法。算法采用反学习初始化方法使初始种群均匀分布于搜索空间。为了平衡搜索过程中可行个体和不可行个体的数量,算法使用自适应选择策略。在跟随蜂阶段,采用最优引导搜索
针对粒子群优化算法搜索空间有限、容易出现早熟现象的缺陷,提出将量子粒子群优化算法用于求解作业车间调度问题。求解时,将每个调度按照一定的规则编码为一个矩阵,并以此矩阵作为算法中的粒子;然后根据调度目标确
论文研究-求解约束优化问题的内外交叉遗传算法.pdf, 针对很多约束优化问题的最优解位于可行域的边界上或其附近的特点,提
针对柔性作业车间,建立一种以能耗最小化为目标的数学模型,解决低碳策略下的该车间内的作业调度问题。对于上述模型,提出一种改进型候鸟优化(Improved Migrating Birds Optimiza
灰狼优化算法(GWO)是目前一种比较新颖的群智能优化算法,具有收敛速度快、寻优能力强等优点。将灰狼优化算法用于求解复杂的作业车间调度问题,与布谷鸟搜索算法进行比较研究,验证了标准GWO算法求解经典作业
流窜犯问题(TravelingThiefProblem,TTP)是旅行商问题和背包问题的一个组合问题,同时具有两个问题的计算复杂度。在现有TTP问题中考虑了小偷提前不知道物品具体位置的情况,给出了新的
针对教与学优化算法(teaching-learning-based optimization,TLBO)在求解一些高维多模态复杂优化问题时,存在种群容易过早陷入局部搜索,导致丢失全局最优解的问题,提出
针对强噪声环境下语音增强中噪声估计和先验信噪比估计算法导致的语音失真和音乐噪声的问题,利用语音和噪声的统计模型的对称性得到一种噪声幅度的估计值为参考,提出了一种噪声估计算法,改进了先验信噪比估计算法,
基于蚁群算法求解TSP问题的研究,吴璇,,蚁群算法(antcolonyoptimization,ACO),是一种用来在图中寻找优化路径的机率型技术,其利用多样性和正反馈性机制能够进行分布式并行查找
暂无评论