暂无评论
贪心粒子群算法求解多维0-1背包问题,郝俊玲,,本文将单维背包问题求解中常用的贪心思想推广到多维0-1背包问题,但多维背包问题的多约束特性使得单维背包问题中按物品性价比非增
提出了一种基于动态粒子群优化的网格任务调度算法。设计了网格任务调度问题的数学模型,给出了自适应变异的动态粒子群优化算法的框架,引入了自适应学习因子和自适应变异策略,从而使算法具有动态自适应性,能够较容
为求解车辆路径问题提出一种改进的混沌粒子群优化算法。该算法在基本混沌粒子群优化算法(CPSO)基础上,引入逻辑斯特函数,对惯性权重因子w进行非线性调整,提高了算法的寻优能力,有效避免了算法陷入局部最优
求解约束优化问题的改进粒子群优化算法!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
基于社会系统中普遍存在“分久必合,合久必分”的现象,提出了基于分合思想的粒子群优化算法。分策略提高了演化群体的多样性,克服了粒子群优化算法局部收敛的缺陷。合策略吸取了不同群体的优良特性,提高了算法的全
文化粒子群优化算法,艾景波,滕弘飞,为了提高粒子群优化(PSO)算法的计算精度和计算效率,避免“早熟”,本文给出文化粒子群优化算法。该算法模型将PSO纳入文化算法框
针对粒子群优化算法在处理高维复杂函数时存在收敛速度慢、易陷入早熟收敛等缺点,提出了混合粒子群优化算法。它借鉴群体位置方差的早熟判断机制,把基因换位和变异算子引入到算法中,构造出新的个体和个体基因的适应
结合小生境思想及灾变原理,提出了一种动态调整种群结构的粒子群算法(AGPSO)。该算法在获取局部最优区域后只留下部分粒子寻找局部最优点,同时将其他粒子进行灾变处理,然后约束在剩余区域进行新最优区域搜索
Sun等人从量子力学的角度提出了具有量子行为的粒子群优化算法,它在搜索能力上优于传统的PSO算法,自适应参数的数目也比之较少。集中讨论了应用QPSO如何选择自适应参数的问题。介绍了QPSO算法,给出了
电力系统经济调度问题是电力系统中的一个重要的研究课题,针对该问题,提出一种改进粒子群优化(ODPSO)算法.改进算法在搜索前期,采用广义的反向学习策略,使算法能够快速地靠近较优的搜索区域,从而提高收敛
暂无评论