学习风格能明显地影响学生在网络环境下的学习效果。贝叶斯网络是实现学习风格自动检测的重要手段,而TAN贝叶斯网络作为改进的朴素贝叶斯网络,具有更优的分类精度。以FSLSM模型为基础,提出了基于学习风格预设的TAN贝叶斯网络学习风格模型,通过挖掘学生的网络学习行为实现学习风格的自动检测。通过实验将BN算法和TAN算法进行了比较,实验结果表明TAN学习风格模型检测具有更高的准确性。