暂无评论
重点讲解工作流模型中的主要的几种数据挖掘算法。 并结合实际应用进行说明
大部分数据流分类算法解决了数据流无限长度和概念漂移这两个问题。但是,这些算法需要人工专家将全部实例都标记好作为训练集来训练分类器,这在数据流高速到达并需要快速分类的环境中是不现实的,因为标记实例需要时
数据恢复技术应用研究论文.............
混沌时间序列预测是混沌理论的一个重要方向和研究热点,在气象、水力、经济和通信等各个领域有着广泛的应用。然而,由于混沌时间序列高度复杂的非线性特征,很难从理论上定量研究。利用贝叶斯网络(BNs)在处理不
为了提高时间序列预测方法的预测精度以及增强其适用性,提出一种ARIMA-WASDN加权组合方法。该方法同时使用差分自回归移动平均(autoregressiveintegratedmovingavera
为了解决误判问题,从预测的角度给出了离群点的定义,并提出了预测可信度和离群度的概念;同时,提出采用置换技术来降低离群点对预测模型的影响,并提出了基于集成预测的稀有时间序列检测算法。针对真实数据集的实验
基于回声状态网络的混沌时间序列多步预测,宋勇,李贻斌,针对回声状态网络在权值学习过程中存在的病态问题,提出了一种基于正则化方法的回声状态网络学习算法。在标准误差项基础上增加一
针对害虫发生数据高度非线性特点导致传统方法预测准确率低的难题,提出一种基于支持向量机(SVM)的多变量自回归(CAR)的害虫时间预测方法(SVM_CAR)。SVM_CAR首先利用SVM以留一法的MSE
论文研究-基于可行域解析中心的股指时间序列预测.pdf, 预测股票涨跌情况,并提出了一种新的时间序列预测方法,该方法将时间序列预测问题转化为多类分类问题.同时在分析现有多类分类机器不足的基础上,提出了
首先应用模糊聚类方法将数据分类,以相邻两个聚类中心的中点作为子区间的分界点来划分论域,并以此将时间序列模糊化为模糊时间序列;其次根据证券市场主要量价指标建立了具有多个前件的高阶模糊关系;最后将该模型用
暂无评论