针对推荐系统中存在的数据稀疏性和推荐准确性问题,利用信任传递思想,融合个体影响力计算模型和用户评分预测模型,使用结构投影非负矩阵分解推荐算法,采用随机梯度下降逼近方法,提出了一种以保留原始数据结构特征为目的、融合个体影响力和信任传递的结构投影非负矩阵分解推荐算法TP-SPNMF。通过多组对比实验证明,相比其他算法,TP-SPNMF算法不仅降低了MAE和RMSE,还提高了系统的预测准确性。