针对大型人脸数据库中进行人脸匹配识别时存在识别速度时间长、影响实时应用效果的问题,提出了一种基于凸包的人脸粗分类新方法。该方法从几何模式特征出发,以抽取人脸的二维凸包不变量特征为基础,使用层次聚类对人脸的轮廓线进行粗分类,建立人脸数据库的层次索引结构。在实验中,将MUCT和PICS人脸数据库的正面人脸图像粗分为六类,分类的平均准确率约为89%。验证了该方法在人脸数据库上执行快速粗分类是可行的。