从分割图像与原图像的内在联系出发,提出了一种新的基于Otsu算法与互信息量技术相结合的分割算法——OMI算法。首先利用Otsu算法确定全局阈值作为初值,以互信息量为目标函数,在小范围内计算分割图像与原图像的互信息量,互信息量达到最大时的阈值即为最优值,这是将图像配准方法用于分割的一种创新性尝试。对大量人体寄生虫显微图像进行了实验,结果表明,本算法所得到的目标图像的边界特征保持完好,虚假目标信息大大降低,图像边界细腻、连续且定位性能好。