暂无评论
本程序是关于FSP的粒子群多目标(加工时间及拖期时间)算法,通过pareto方法求解非劣解。
mopso多目标粒子群python
一种高维多目标量子粒子群优化算法,夏长红,张勇,高维多目标优化问题广泛存在于日常生产生活中。由于该类问题一般包含多于3个且相互冲突的目标函数,至今缺乏有效的解决方法。基��
文化粒子群优化算法,艾景波,滕弘飞,为了提高粒子群优化(PSO)算法的计算精度和计算效率,避免“早熟”,本文给出文化粒子群优化算法。该算法模型将PSO纳入文化算法框
针对粒子群优化算法在处理高维复杂函数时存在收敛速度慢、易陷入早熟收敛等缺点,提出了混合粒子群优化算法。它借鉴群体位置方差的早熟判断机制,把基因换位和变异算子引入到算法中,构造出新的个体和个体基因的适应
结合小生境思想及灾变原理,提出了一种动态调整种群结构的粒子群算法(AGPSO)。该算法在获取局部最优区域后只留下部分粒子寻找局部最优点,同时将其他粒子进行灾变处理,然后约束在剩余区域进行新最优区域搜索
基于社会系统中普遍存在“分久必合,合久必分”的现象,提出了基于分合思想的粒子群优化算法。分策略提高了演化群体的多样性,克服了粒子群优化算法局部收敛的缺陷。合策略吸取了不同群体的优良特性,提高了算法的全
为了克服算法早熟收敛问题并提高算法精度,引入了膜计算理论。将PSO算法与P系统相结合,提出了一种基于P系统的粒子群优化算法(P-PSO),有效地平衡粒子群的全局搜索和局部寻优。采用常用的三个测试函数对
分析了粒子群算法的惯性部分、个体认知部分和群体认知部分的作用,对粒子群算法迭代方程的各部分进行变形,获得了三种新形式的粒子群算法。用算例说明所得到的三个新的粒子群算法具有较好的优化能力。
针对多目标粒子群算法存在的问题,提出了一种可行性规则动态调整的多目标粒子群算法。在算法中,根据粒子之间的相似度值动态非线性地更新算法的惯性权重,使得算法可以高效地平衡全局和局部搜索之间的矛盾;采用动态
暂无评论