在PSO聚类算法的基础上,提出了基于量子行为的微粒群优化算法(QPSO)的数据聚类。QPSO算法不仅参数个数少、随机性强,并且能覆盖所有解空间,保证算法的全局收敛。PSO与QPSO算法的不同在于聚类中心的进化上,实验中用到四个数据集比较的结果,证明了QPSO优于PSO聚类方法。在聚类过程中使用了一种新的度量代替Euclidean标准,实验证明了新的度量方法比Euclidean标准更具有健壮性,聚类的结果更精确。