暂无评论
论文研究-复杂产品多故障诊断中的核模糊聚类方法.pdf, 多故障作为标准单故障的组合,很多文献对多故障的诊断都提出行之有
研究滚动轴承故障诊断的有效方法,目前主要有神经网络、专家系统方法、模糊数学方法等,但是利用这些技术对滚动轴承进行故障诊断,由于获得的故障断数据存在不精确和不完备的缺陷,无法获得满意的诊断效果。为了能够
美国西储大学滚动轴承故障诊断数据集.zip
为解决滚动轴承在变转速工况下的频率谱模糊及强噪声工况下的微弱故障信息提取问题,提出基于EEMD和DT-CWT相结合的故障特征分离法。首先应用阶次跟踪技术将非平稳的时域信号转化为平稳的角域信号,再运用E
粗糙集是一种软计算方法,它不需要任何先验知识和理论推导,仅依赖于原始数据,从数据中发现潜在规律和隐含规则,其核心任务是数据约简,得到最简决策规则。文章基于粗糙集理论的可辨识矩阵算法,对滚动轴承故障信息
针对采煤机滚动轴承常见的突发问题诊断准确性不高和速度慢,以小波包和RBF神经网络为基础,提出了由小波包分解提取各个节点特征能量谱与自适应步长萤火虫算法优化的RBF神经网络进行分类辨识的采煤机滚动轴承故
结合Volterra级数和隐Markov模型,提出了一种基于Volterra核特征提取的HMM故障识别方法。在该方法中,利用子空间法从正常、滚动体故障、内圈故障和外圈故障4种不同的轴承中提取Volte
针对局部特征尺度分解(LocalCharacteristic-scaleDecomposition,LCD)方法中严重的端点效应,将BP神经网络应用到信号的延拓中,提出了一种提出基于BP神经网络延拓局
基于可视图图谱幅值熵的滚动轴承故障诊断方法,作者为陈芒,该诊断方法能够提高轴承故障诊断的准确性和效率。文章详细介绍了该方法的原理、步骤以及实验结果,能够帮助读者更好地理解和应用该方法。
针对提取的滚动轴承故障振动信号中包含大量噪声,采用频域分离的方法,从故障轴承振动信号中分离出纯故障信号,通过对纯故障信号进行小波包分解和重构,对重构后的小波包系数进行Hilbert包络解调并求取解调后
暂无评论