已经调试可用!可放心下载使用!
本程序应用SVM为基础,核函数采用高斯核函数,数据为手写数字数据1和9,用smo加速算法,识别正确率达99.4%,而且我博客有讲解
作为结构风险最小化准则的具体实现,支持向量机方法具有全局最优、结构简单、推广能力强等优点,近几年得到了广泛的研究。本文仔细研究了支持向量机理论,并针对目前一些支持向量机算法存在的缺陷,分析了产生的原因
Java、python、matlab三种语言实现svm算法,可直接运行查看结果。
超经典的支持向量机svm分类算法,很适合初学者用
针对支持向量机在线训练算法训练速度较慢和无法处理边缘支持向量集合为空的缺点,以KKT 条件和拉 格朗日乘数法为基础,用严格的数学推导得到一种改进的训练算法. 通过建立一个矩阵缓存来保存与核函数相关的
遗传算法优化支持向量机源代码 MATLAB代码
SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。
主要用于机械振动故障的识别与诊断
提出基于最优分类标准的核学习方法,这个标准类似于线性鉴别分析和核Fisher判别式。并把此算法应用于模糊支持向量机多类分类器设计上,在ORL人脸数据集和Iris数据集上的实验验证了该算法的可行性
用户评论