提出一种结合小波包分解和广义动态模糊神经网络的故障诊断方法,该方法首先采用小波包分解与重构提取各频带的能量作为故障特征向量,并以此向量作为输入,再利用广义动态模糊神经网络建立轴承故障诊断模型,该模型不仅能对模糊规则而且能对输入变量的重要性做出评价,使每个输入变量和模糊规则都可根据误差减少率进行修正。实验结果表明:该方法对识别和预测轴承的状态具有较高的精度和效率。