暂无评论
针对用户在社区网络中面对海量的信息和资源,如何快速便捷地获得自己感兴趣内容的问题,提出一种基于社区网络内容的个性化推荐算法。在得到相同兴趣用户聚类的基础上,该算法首先通过用户访问日志信息挖掘相似内容推
在信息处理研究领域,现有的大多数聚类算法都需要人为地给出一些参数.然而,在没有先验知识的情况下,人为地确定这些参数是十分困难的,而且现有的聚类算法的时空效率也有待于进一步提高.为了解决这一难题,首先根
基于词汇相关度的个性化搜索算法,谭振华,程维,本文提出了一种基于词汇相关度的个性化搜索算法。提出使用词汇之间的“相关度”来存储单个用户的个性化信息,并提出了能够在用户
一种用于微博聚类的K-means改进算法,张帅,,随着信息技术的不断发展,出现了许多新型的信息媒介,微博就是其中之一。由于微博所具有的许多特性,对微博内容分析挖掘的重要性
针对目前调色板信息隐藏方法的弱点,结合聚类分析技术,提出了一种新的基于调色板聚类的信息隐藏算法ClusterStego。根据定义的相似性测度和聚类准则函数,通过对由调色板形成的RGB空间进行合理聚类来
针对传统K-medoids聚类算法初始聚类中心选择较敏感、聚类效率和精度较低、全局搜索能力较差以及传统蜂群算法初始蜂群和搜索步长随机选取等缺点,提出了一种基于粒子和最大最小距离法初始化蜂群和随着迭代次
针对大数据环境下高维数据聚类速度慢、准确率低的问题,提出了一种面向大数据的快速自动聚类算法(FACABD)。FACABD聚类算法利用谱聚类算法对大数据集进行归一化和列降维,提出了一种新的快速区域进化的
一种新的含噪数据FCM聚类算法,李月娥,夏士雄,IADFCM算法克服了传统的FCM算法对噪声敏感和不能直接处理区间数的缺点,但忽略了区间中点和半宽对于区间数分析的不同贡献。本文给出
针对近邻传播(Affinity Propagation,AP)聚类算法存在运算复杂度高且未考虑数据点密度对聚类效果的影响的问题,提出一种改进的近邻传播聚类算法并应用于图像分割。首先,在度量数据点之间的
模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始中心非常敏感易导致一致性聚类。协同聚类算法利用不同特征子集之间的协同关系并与其他算法相结合,可提高原有的聚类性能。对此,在可
暂无评论