将鹰策略和差分进化结合用于解决可靠性冗余优化问题.优化过程分为两个阶段:第一阶段使用Lévy飞行在解空间中进行全局搜索,第二阶段使用差分进化算法在前阶段得到的有前途解的周围进行快速的局部搜索.同时,修改了差分进化算法的变异算子和交叉算子以提高局部搜索的性能.该算法较好地实现了全局搜索和局部搜索的平衡,既有利于跳出局部最优,又可以加快局部收敛.通过对可靠性冗余优化的两个基本问题的实验表明,所提出的算法在解决可靠性冗余优化问题上是有效的.