粗糙集理论知识库的属性重要度,体现的是去掉某个或某些属性前后的知识库分类变化的程度。对现有粗糙集理论的属性重要度确立方法的不足,充分考虑条件属性对决策的直接和间接的影响,提出一种新的基于粗糙集属性依赖度的属性重要度确定方法。此外,针对原有属性重要度与改进重要度的差别,讨论改进的属性重要度的意义,并证明改进的属性重要度更加可信。最后,利用改进的方法对机械故障属性重要度进行仿真;对比原有属性重要度的数据,改进方法获得的数据不但更符合属性约简结果,并且具有更大区分度,十分有利于决策者快速做出判断。