I.I.D.随机变量部分和之和重对数律的精确渐近性
为研究独立同分布(i.i.d.)随机变量序列部分和之和重对数律的精确渐近性质,在矩条件较弱的情形下,采用截断的方法,证明了ε→0时的几个精确渐近性质;在矩条件较强的情形下,利用Berry-Esseen不等式进行逼近,得到了ε→α+1(1/2)的精确渐近性质.研究结论表明,i.i.d.序列部分和之和重对数律的精确渐近性质与部分和的结论类似,这就将i.i.d.序列部分和精确渐近性的结果推广到部分和之和的情形,丰富了i.i.d.序列部分和之和精确渐近性的结果.
暂无评论