暂无评论
经典模糊C均值聚类算法(FCM)基于欧氏距离,存在不同规模类簇不能正确聚类问题,针对此问题提出一种基于[K]近邻隶属度的模糊C均值聚类算法(KNN_FCM)。讨论了基于[K]近邻隶属度的粗糙C均值聚类
针对填补零的OFDM(ZP-OFDM)系统,提出了一种新的基于子空间的自适应半盲信道估计算法。该算法利用ZP-OFDM系统导频信息,给出精确的信道参数初始值。然后通过一种新的子空间跟踪以及功率方法,进
传统的协同过滤算法广泛应用于推荐系统领域,但该算法仍存在用户冷启动和数据稀疏性问题,造成算法的推荐质量较差。对此,提出一种基于用户多属性与兴趣的协同过滤算法AICF(attributes and in
针对传统的BIRCH算法用直径来控制聚类的边界,对非球形聚类效果不佳,甚至会把非球状的簇分割为不同簇这一缺点,对BIRCH算法进行改进,改进算法首先建立多棵CF树,每棵CF树代表一个簇,并结合DBSC
首先介绍传统距离计算方法在聚类应用中的不足,并针对这点提出一种基于权重向量的相对距离计算方法。在应用DBSCAN算法的基础上,融入相对距离的计算及k-d树的范围查找的应用。该算法不仅能得到很好的聚类效
针对传统K-medoids聚类算法对初始中心点敏感,以及迭代次数较高等缺点,提出一种可行的初始化方法和中心点搜索更新策略。新算法首先利用密度可达思想为数据集中每个对象建立一个稠密区域,遴选出[K]个密
针对传统BA(蝙蝠)算法易被局部极值吸引、发生过早收敛等问题,将莱维飞行搜索策略引入传统BA算法对蝙蝠的位置和速度更新方式进行改进,从而提高算法的全局搜索能力;通过引入非线性惯性权重平衡算法的全局和局
CABPM:基于模式匹配的聚类算法,方应飞,,本文通过研究一种快速前向模式匹配算法Rete算法,从一个新的角度重新分析设计了聚类算法-基于模式匹配的聚类算法( A Clustering Algori
基于聚类算法的Web日志挖掘,徐翔,谢东亮,随着互联网的迅速发展,WWW网站中的日志信息现已呈现出爆炸式增长趋势。为了能充分挖掘Web日志中潜在的有效信息,本文提出一种Web日
模糊C均值算法(FuzzyC-Means,FCM)是目前应用比较广泛的一种聚类算法。FCM算法的聚类质量依赖于初始聚类中心的选择并且易陷入局部极值,结合混合蛙跳算法(ShuffledFrogLeapi
暂无评论