为进一步提高牛肉大理石纹评级的正确率,提出了基于完整局部二值模式(Completed Local Binary Pattern,CLBP)、改进核主成分分析(Kernel Principal Component Analysis,KPCA)和随机森林(Random Forests,RF)的牛肉大理石纹评级方法。首先,利用CLBP提取牛肉大理石纹图像的纹理特征;其次,采用混沌蜂群算法对KPCA的核参数进行优化,使KPCA的降维效果和特征提取达到最优,获得表征牛肉大理石纹样本图像的特征向量;最后,使用随机森林完成牛肉大理石纹样本的分级识别,获得最终评级结果。大量实验结果表明,与基于分形维和图像特征