针对甲状腺结节超声图像易被噪声污染、对比度低、灰度不均匀等特点,提出基于改进的LIF模型与CV模型相结合的分割算法。针对LIF模型在演化过程中易陷入局部最小值的问题,融入了局部梯度能量信息,从而避免了演化时局部最优的问题;同时结合了CV模型对初始化位置不敏感的优点,从而使得该模型不仅能实现对灰度不均匀图像的分割,而且降低了对初始轮廓位置的敏感性。对比实验结果表明,该算法既能有效克服噪声的影响,又能实现对灰度不均匀图像的精确分割。