时间序列预测是数据中心关键性能指标异常检测的重要环节。针对时间序列,利用小波基函数作为隐含层节点传递函数来构造小波神经网络进行预测;同时选取动量梯度下降法提高神经网络学习效率;再根据粒子群算法训练得到最优解作为神经网络参数初始值;最后使用MATLAB进行仿真,以较高准确性对关键性能指标时间序列进行了预测。