针对当前机器人路径规划算法存在计算参数多的问题,提出一种单计算参的自学习蚁群算法。该算法使用一种改进的栅格法完成环境建模,种群中个体使用8-geometry行进规则,整个种群的寻优过程使用了自学习和多目标搜索策略。其特点在于整个算法只需进行一个计算参数设置。仿真实验表明,在复杂的工作空间,该算法可以迅速规划出一条安全避碰的最优路径,效率优于已存在算法。