在文本分类中,特征空间维数可以达到数万维。使用信息度量的方法,如文档频率、信息增益、互信息等,对特征进行选择后的维数通常还是很大,降低阈值或减小最小特征数可能会降低分类效果。针对这个问题,提出基于粗糙集的二次属性约简。实验表明,该方法在有效降低特征维数的同时保证了分类效果。