谱聚类是基于谱图理论基础上的一种聚类方法,与传统的聚类方法相比:具有在任意形状的样本空间上聚类并且收敛于全局最优解的优点。(但效率不高,实际工作中用的比较少) 谱聚类 通过对样本数据的拉普拉斯矩阵的特征向量进行聚类,从而达到对样本数据进行聚类的目的;其本质是将聚类问题转换为图的最优划分问题,是一种点对聚类算法。 谱聚类算法将数据集中的每个对象看做图的顶点 V,将顶点间的相似度量化为相应顶点连接边E的权值 w,这样就构成了一个基于相似度的无向加权图 G(V,E),于是聚类问题就转换为图的划分问题。基于图的最优划分规则就是子图内的相似度最大,子图间的相似度最小。 步骤 谱聚类的构建过程主要包含以下