目前,Android 平台重打包应用检测方法依赖于专家定义特征,不但耗时耗力,而且其特征容易被攻击者猜测。另外,现有的应用特征表示难以在常见的重打包应用类型检测中取得良好的效果,导致在实际检测中存在漏报率较高的现象。针对以上2个问题,提出了一种基于深度学习的重打包应用检测方法,自动地学习程序的语义特征表示。首先,对应用程序进行控制流与数据流分析形成序列特征表示;然后,根据词向量嵌入模型将序列特征转变为特征向量表示,输入孪生网络长短期记忆(LSTM,long short term memory)网络中进行程序特征自学习;最后,将学习到的程序特征通过相似性度量实现重打包应用的检测。在公开数据集An