针对证据理论在覆盖率高的柴油机故障诊断中容易出现证据融合误差的问题,提出一种基于属性层次模型的证据融合方法.首先,通过余弦相似度改进目标层权重算法,得到反映目标层不同证据源差异的本质差异因子;然后,采用贝叶斯网络规则改进属性层权重算法,计算相关联的属性层证据源熵值权重;最后,通过故障层次关联特性和CWAA算子修正证据理论融合规则,将不同层次属性权重有效融合,减少系统复杂性引起的诊断误差.在R6105AZLD柴油机台架上的实验结果表明,引入所提方法后的诊断准确度和鲁棒性大幅提高.