对于多传感器多目标跟踪问题,系统偏差对航迹融合精度有较大影响,因此在信息融合系统中,首先要对各传感器的系统偏差进行估计,而在含错误关联和观测野值的复杂环境下,传统系统偏差估计方法的性能会严重退化.对此,提出一种具有递推形式的近似最小一乘稳健估计算法,以减少异常噪声对偏差估计的不利影响.使用平方根平滑逼近函数替代最小一乘法的目标函数,基于牛顿方向及其秩1修正推导出该方法的递推求解框架.基于条件数分析,证明所提出算法的数值稳定性好于Huber方法.通过两个仿真算例,将所提出算法与已有其他算法进行对比验证.仿真结果表明,在含错误关联和观测野值的条件下,所提出算法可以改善偏差估计精度,并且明显好于已有