针对基于压缩感知的压缩采样匹配追踪(CoSaMP)算法迭代次数严重依赖于信号稀疏度,候选原子冗余度大,从而导致最终的支撑原子集选择时间长、选择精度低等问题,提出一种基于双阈值的压缩采样匹配追踪算法.该算法利用模糊阈值进行支撑集候选原子的选择,引入残差与观测矩阵的相关度变化阈值作为迭代停止条件,对图像进行重构.仿真实验表明,所提出的算法重构速度快,重构效果优于CoSaMP算法.