针对多尺度变换域内红外(IR)与灰度可见光(VIS)图像融合后图像清晰度差、纹理信息不丰富等问题,提出一种基于剪切波变换(ST)域改进的IR与灰度VIS图像融合算法.首先,采用形态学顶帽变换(MTH)增强IR与VIS图像;然后,对增强后的IR与VIS图像采用ST变换,将其分解成高、低频图像,针对高频图像提出局部标准差(LSTD)与系数绝对值的融合策略;针对低频图像提出一种改进的权值融合策略;最后,通过逆剪切波变换(IST)获得最终融合图像.仿真实验结果表明,所推荐的方法具有优越的性能.