针对传统局部二值模式(LBP)及其一些改进方法会将具有不同灰度特征的邻域赋予相同的特征值和特征维数倍增的问题,提出一种基于均匀k均值和高维局部二值模式的算法.该算法首先对原图进行切割得到子图;然后提取子图的高维局部二值模式特征,利用均匀k均值对高维特征进行降维处理;最后级联所有的子图特征进行分析.为了验证该算法的性能,在ORL人脸库和YALE人脸库以及FERET人脸库上进行对比实验,结果表明该算法在保证特征维数不递增的前提下,能够明显提高LBP算法的识别率.