针对不相关并行机调度问题, 提出一种基于信息熵的自适应分布估计算法. 根据问题特性, 设计了面向工件机器分配的概率模型及其基于增量学习的更新方式, 学习速率基于信息熵进行调整. 为了增强算法局部寻优能力, 采用基于关键机器的邻域结构进行局部搜索; 同时讨论了信息熵与学习速率的关系, 并探讨了关键参数对算法性能的影响. 基于标准算例的测试结果与算法比较, 验证了学习速率的自适应调整机制以及所提出算法的有效性.