为提高随机变量非高斯分布时广义高阶容积卡尔曼滤波(GHCKF)的鲁棒性,提出一种基于Huber的鲁棒GHCKF算法.从近似贝叶斯估计角度,解释Huber方法作用于卡尔曼滤波的本质是对新息进行截断平均.采用Huber方法处理观测量,进行标准的GHCKF量测更新,从而实现算法的鲁棒化.所提出算法充分利用容积变换的优势,无需通过统计线性回归模型对系统的非线性量测模型进行近似.仿真结果表明,所提出算法具有鲁棒性强和估计精度高的特点.