在YOLOv2算法的基础上,根据实际道路环境的变化对YOLOv2-voc的网络结构进行改进,基于ImageNet数据集和微调技术得到分类训练网络模型,根据训练结果与车辆目标特征的分析,对算法参数进行修改,获得改进的车型识别分类网络结构模型YOLOv2-voc_mul。为验证所提模型的有效性,分别对简单背景和复杂背景下的样本进行检测,并与YOLOv2、YOLOv2-voc和YOLOv3模型在迭代70000次后的检测结果进行了对比。实验结果表明:在简单背景下,YOLOv2-voc_mul模型的精度可达99.20%,不同车型的平均精度均值达到了89.03%;在复杂背景下,YOLOv2-voc_mul