提出一种基于自适应加权Curvelet梯度方向直方图(AWCHOG)的人脸识别算法。首先,人脸图像通过基于Wrapping的离散Curvelet变换得到多尺度多方向的Curvelet变换系数;然后按照编码方式将同一尺度下不同方向的特征进行编码融合,获得融合后的幅值域图谱,并通过HOG算子结合分块的方法获得Curvelet变换后融合图像的直方图特征,分别根据每个尺度对人脸识别率的贡献进行计算,得出各尺度的权重;最后融合权重系数以及各尺度的HOG特征,利用最近邻分类器进行分类。通过在ORL、AR和CAS-PEAL三个人脸库的实验可以看出,所提算法在人脸图像部分遮挡、姿态、表情、光照变化以及噪声等因