为了改善差分灰狼预测算法的早熟收敛、搜索能力不均衡、容易陷入局部最优等问题,提出了一种改进的混合灰狼优化(HGWO)预测算法,可自适应改进和调整差分进化中的变异算子、交叉算子和变异策略。嵌入具有分类预测功能的支持向量机(SVM),同时引入莱维飞行全局搜索更新狼群位置,优化SVM核函数参数γ和惩罚因子C,构建了HGWO-SVM预测算法预测推焦车大车道内物体的运动轨迹。结果表明,与已有算法相比,该算法对行人、自行车、电瓶车、电动三轮车、大中小型四轮汽车的位置预测相对实际值的误差分别降低了4.21、4.14、7.91、2.03、25.53个百分点,预测时间减少了8.8~10 s。可以克服焦炉恶劣的环