在目标遮挡、光线变化等复杂的跟踪环境下,现有相关滤波跟踪算法无法对目标进行长时间实时稳定跟踪。提出一种基于模型更新与快速重检测的长时跟踪算法。首先,在现有的目标定位与尺度变化的相关滤波跟踪算法基础上搭建长时目标跟踪的框架,提出加入模型监测更新机制,根据最大响应和平均峰响应相关能量值判别进入更新或重检测环节;然后,基于提取描述子特征的重检测方法,将提取特征的比特维数统一降到512进行优化,加快重检测速率。所提算法选取OTB-100中20个有代表性的序列进行测试,成功率评估均值为0.706,精确度评估均值为0.805,平均速度为48.5 frame/s;在自采集的数据集上平均准确率能达到87.65