为了解决传统非局部立体匹配算法在纹理丰富区域匹配误差较大的问题,提出基于颜色和边缘信息的非局部立体匹配算法。代价计算阶段,结合灰度和梯度信息求得匹配代价。代价聚合阶段,为降低相似背景下的误匹配率,利用最小生成树进行代价聚合,结合颜色和边缘信息重新定义权重函数。再利用胜者为王(WTA)策略求得最佳视差,通过左右一致性检验和中值滤波等后处理操作对视差图作精细化处理。最后在Middlebury数据平台上对算法进行可行性验证,实验结果表明,图像的平均误匹配率由原算法的6.02%降低到5.10%。